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In relation to molecular magnetishit has been important to Steady-state EPR
clarify magnetic interactions between paramagnetic molecules, and | g=2.002
an electron paramagnetic resonance (EPR) method has been shown 206G
to be useful for this purpoge-owever, in general, it is very difficult + -~

[Lu(TAP),] a

to examine the magnetic properties of species exhibiting strong
antiferromagnetic interactions among spin sites. For example, a pair
of molecules in the doublet ground state does not exhibit any steady-
state EPR signals, when the antiferromagnetic interactigh) (2

much larger than the Boltzmann energyT) If this kind of 0
electronic state could be observed by means of EPR, we may obtain I4(TAP)] b
novel and valuable information on the magnetic properties.

We report here the first EPR study on a homobiradical with a
strong antiferromagnetic interaction|J2> kT). The examined
molecule is bis(tetraert-butyltetraazaporphinato)lutetium (Ill) (Lu-
(TAP),) (Chart 1), which exhibits a useful electrochromism over
several step? [LU(TAP),]™, an oxidized form of [Lu(TAPy°
radical initially synthesized, corresponds to a dimer of TAP
radicals?® It is known for this kind of double-decker dimers that
the two porphyrin radicals show a strong antiferromagnetic interac- \/
tion, resulting in an absence of a steady-state EPR s¥ddsing Figure 1. Steady-statea b, c¢: solid lines) and time-resolvedi{ e, f:

a time-resolved EPR (TREPR) method, however, we have suc- solid lines) EPR spectra of [Lu(TAR) (a, d), [Lu(TAP)]° (b, €), and
ceeded in observing a triplet EPR spectrum consisting of twoTAP  [LU(TAP)]™ (c, ) at 20 K. TREPR spectra were measured afu& @fter

. . o . . laser excitation. Simulation spectrd, (f: broken lines) were calculated
radicals, Whl_ch_ exemp_llfles a novel approach for clarifying anti- using the parameters described in the text.
ferromagnetic interactions. Furthermore, TREPR measurements

[Lu(TAP),I c

have been carried out for [Lu(TARY and [Lu(TAP)] . Electronic (a) [Lu(TAP),]* (b) [Lu(TAP),]° (¢) [Lu(TAP),]"
structures and excited-state dynamics are compared among [Lu- —. A S B J—
(TAP),]™, [LU(TAP),)° and [Lu(TAP}]-, and this comparison e &% —“‘:—— G = ____ =

illustrates the utility of TREPR for examining excited-state proper-
ties in various oxidation states

[LU(TAP),]° and ZnTAP were synthesized fromyFAP (Aldrich) ——L ; ) —L am —ﬁ‘ : 5 ‘—Lalu ; -H—

following the method reported previouslyreduction and oxidation .
of [Lu(TAP)2]° were performed by adding tetrabutylammonium .« > Molecular orbital d‘,t%rgﬁﬁ“serof [EL(TA,W (@), [Lu(TAPY]
hydroxide and bromine, respectively, and were confirmed by-UV  (b), and [Lu(TAPY]~ (c).
vis absorption spect®lTREPR and steady-state EPR measurements
were described previousfySimulation spectra were calculated
following the procedure already reportéd.

Steady-state EPR spectra of [LU(TAP) [Lu(TAP),]°, and
[LU(TAP),]~ are shown in Figure 1. For [LU(TAE]Y consisting
of diamagnetic TAP- and TAP- radical, an EPR signal is seen at
aroundg = 2.002, without hyperfine splitting>€On the other hand,
[Lu(TAP),]™ consists of a pair of TAP radicals, but it does not =N
exhibit any steady-state EPR signals except that from the remaining N= i "N': >\
tr_aces of [Lu(TAP)]°, even at room temper_at'u?é'.his I_ack of EPR Q N N
signal reflects the strong antiferromagnetic interaction between the N”q R = t-Butyl
two TAP™ radicals, which originates from the large overlap between
the a2 and a.2 orbitals. That is, the ground state of [Lu(TAP) are in the bonding forbital (Figure 2). In the case of [LU(TARY,
exhibits diamagnetism (the singlet ground state), and two electronsSince two diamagnetic TAP ligands constitute this reduced form,

no EPR signal can be observed.

*To whom correspondence should be addressed. E-mail: nagaok@ TREPR §pe(;tra of [Lu(TAR)", [LU(TAP)Z]O' 'and [_LU(TAPH_
mail.cc.tohoku.ac.jp. are shown in Figure 1. Although no TREPR signal is seen for [Lu-
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(TAP),]°21%we have succeeded in observing the TREPR spectrum No. 14703007 from the Ministry of Education, Culture, Sports,

of [LU(TAP),]™ in the lowest excited triplet (iJ state, which is
different from those of HTAP, ZnTAP, and [Lu(TAP] .1 This
TREPR spectrum was reproduced using EPR parameiers,

Science, and Technology, Japan, and the Shorai Foundation for
Science and Technology.
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(ISC) from the lowest excited singlet{)Sstate to the y sublevel of
the T; state Px:Py:P, = 0:0.7:0.3)"2 To clarify the electronic

free of charge via the Internet at http://pubs.acs.org.

structure of the T state, we have calculated tie value of the
(&) configuration. Here, th® value of the (ba) configuration

is reasonably transformed into a magnetic dipalgole interaction
between the @* and a2 orbitals under a half-point charge approxi-
mation3 Assuming the interplanar distance is 3.2%heD value
was evaluated as0.456 GHz, which reproduces excellently the
experimentalD value & —0.480 GHz). The T state of [Lu-
(TAP),]* is clearly assigned to th&ay,~ay,B) configuration (or
3(b1a)). To the best of our knowledge, this is the first EPR obser-
vation of a homobiradical with a strong antiferromagnetic interaction
(23] > KT). In addition, the lowest excited state of the oxidized
form of double-decker porphyrin dimers was experimentally
characterized for the first timfe>10.1518

For [Lu(TAP)]~, the T TREPR spectrum was reproduced using
EPR parameter® = 0.405 GHz E = 0.065 GHz, and®P,:Py:P, =
0: 0.4: 0.6. TheD value of [Lu(TAP)]~ is much smaller than
that = 0.915 GHz) of the corresponding monomer, ZnTAP. Two
kinds of interactions, exciton (EX) and charge resonance (CR) inter-
actions, exist in a Tdimer consisting of two identical unit§.16.18
When the constituting TAP planes are parallel, Ehgalue is not
influenced by the EX interaction, and therefore, the sibalialue
results from the CR charact&.The contribution of the CR
configuration was evaluated as 0.38 following the method reported
previously!218.19

It is noteworthy that selectivities in the S- T1 ISC are different
between [Lu(TAP) ™ (Px:Py:P, = 0:0.7:0.3) and [Lu(TARJ~ (P«
P,:P, = 0:0.4:0.6). In analogy with Zn porphyrifg°the selective
ISC of [LUu(TAP),]~ is reasonably explained by spiorbit coupling
(SOC) between thegland g, orbitals or between,mnd g orbitals
on the central lutetium ion, which are admixed with theand e
orbitals of TAP ligands, constituting the; @nd T, states>6 In
the case of the ) configuration of [Lu(TAP)]*, the electron
density of the band a orbitals is absent on the pyrrole nitrogens
and lutetiun® That is, the ISC is not influenced by the SOC of the
central lutetium ion, and therefore, the selective ISC to the y sub-
level occurs due to the SOC between thando orbitals, which
are admixed with theand a orbitals via vibronic coupling:2° It
is thus clearly shown that the influences of the central metal ion
are dependent on the oxidation states of the TAP ligand.

In summary, we have described a TREPR study on three oxi-
dation states of Lu(TAR) where the lowest excited states of the
oxidized and reduced forms are quantitatively characterized. In
particular, the T[LU(TAP).]* corresponds to the first EPR obser-
vation of a homobiradical with a strong antiferromagnetic interac-
tion. This kind of TREPR application will provide the novel infor-
mation on antiferromagnetic interactions between paramagnetic spe-
cies. In addition, since there have been only a few studies on the
combined use of the TREPR and electrochemi&trthese T
TREPR spectra of two different oxidation states are the first and
valuable example, exemplifying the utility of TREPR for investigat-
ing compounds in various oxidation states, similarly to steady-state
EPR.
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